Câu hỏi
Trong mặt phẳng tọa độ Oxy, cho đường elip \(\left( E \right):\frac{{{x^2}}}{{{3^2}}} + \frac{{{y^2}}}{{{2^2}}} = 1\) có 2 tiêu điểm là \({F_1},{F_2}\). M là điểm thuộc elip \(\left( E \right)\). Giá trị của biểu thức \(M{F_1} + M{F_2}\) bằng:
- A \(5\).
- B \(6.\)
- C \(3.\)
- D \(2.\).
Phương pháp giải:
Elip \(\left( E \right):\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) có 2 tiêu điểm là \({F_1},{F_2}\) là tập hợp các điểm M sao cho \(M{F_1} + M{F_2} = 2a\)
Lời giải chi tiết:
Ta có: \(M{F_1} + M{F_2} = 2a = 2.3 = 6.\)
Chọn B.