Bài 19 trang 109 SGK Đại số và Giải tích 11


Trong các dãy số cho bởi công thức truy hồi sau, hãy chọn dãy số là cấp số nhân:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Trong các dãy số cho bởi công thức truy hồi sau, hãy chọn dãy số là cấp số nhân:

A. \(\left\{ \matrix{
{u_1} = 2 \hfill \cr 
{u_{n + 1}} = u_n^2 \hfill \cr} \right.\)

B. \(\left\{ \matrix{
{u_1} = - 1 \hfill \cr 
{u_{n + 1}} = 3{u_n} \hfill \cr} \right.\)

C. \(\left\{ \matrix{
{u_1} = - 3 \hfill \cr 
{u_{n + 1}} = {u_n} + 1 \hfill \cr} \right.\)

D. \(7,{\rm{ }}77,{\rm{ }}777,....\underbrace {777..77}_n\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng định nghĩa CSN.

Lời giải chi tiết

Ta có:

\(\begin{array}{l}
+ \left\{ \begin{array}{l}
{u_1} = 2\\
{u_{n + 1}} = {u_n}^2
\end{array} \right. \Rightarrow \frac{{{u_{n + 1}}}}{{{u_n}}} = {u_n};\;\frac{{{u_{n + 2}}}}{{{u_{n + 1}}}} = {u_{n + 1}} = {u_n}^2\\
\Rightarrow \frac{{{u_{n + 1}}}}{{{u_n}}} \ne \frac{{{u_{n + 2}}}}{{{u_{n + 1}}}}
\end{array}\)

\( \Rightarrow \left( {{u_n}} \right)\) không phải CSN.

\( + \left\{ \begin{array}{l}
{u_1} = - 1\\
{u_{n + 1}} = 3{u_n}
\end{array} \right. \Rightarrow \frac{{{u_{n + 1}}}}{{{u_n}}} = 3\;\forall n \ge 1\)

\( \Rightarrow \left( {{u_n}} \right)\) là CSN với công bội q = 3 ; u1 = -1.

\( + \left\{ \begin{array}{l}
{u_1} = - 3\\
{u_{n + 1}} = {u_n} + 1
\end{array} \right.\)

Đây là cấp số cộng với \({u_1}\; =  - 3\) ; công sai \(d = 1\).

+ \(7 ; 77 ; 777 ; … ; 777…77\)

\(\begin{array}{l}
\frac{{{u_2}}}{{{u_1}}} = \frac{{77}}{7} = 11;\;\frac{{{u_3}}}{{{u_2}}} = \frac{{777}}{{77}} \ne 11;\\
\Rightarrow \frac{{{u_2}}}{{{u_1}}} \ne \frac{{{u_3}}}{{{u_2}}}
\end{array}\)

Chọn đáp án B.

Loigiaihay.com


Bình chọn:
3.8 trên 4 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí