Đề bài

Phương trình \(\frac{{2x}}{{x - 2}} - \frac{5}{{x - 3}} = \frac{{ - 9}}{{{x^2} - 5x + 6}}\) \(\left( {x \ne 2;x \ne 3} \right)\) có bao nhiêu nghiệm?

Đáp án:

Đáp án

Đáp án:

Phương pháp giải

Đưa phương trình về phương trình bậc hai một ẩn.

Tính \(\Delta \) để xác định số nghiệm.

Lời giải của GV Loigiaihay.com

Ta có: \(\frac{{2x}}{{x - 2}} - \frac{5}{{x - 3}} = \frac{{ - 9}}{{{x^2} - 5x + 6}}\)

\(\frac{{2x}}{{x - 2}} - \frac{5}{{x - 3}} = \frac{{ - 9}}{{\left( {x - 2} \right)\left( {x - 3} \right)}}\)

\(\frac{{2x\left( {x - 3} \right)}}{{\left( {x - 2} \right)\left( {x - 3} \right)}} - \frac{{5\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x - 3} \right)}} = \frac{{ - 9}}{{\left( {x - 2} \right)\left( {x - 3} \right)}}\)

\(2{x^2} - 6x - 5x + 10 + 9 = 0\)

\(2{x^2} - 11x + 19 = 0\)

Ta có: \(\Delta  = {\left( { - 11} \right)^2} - 4.2.19 =  - 31 < 0\) nên phương trình đã cho vô nghiệm.

Đáp án: 0

Các bài tập cùng chuyên đề

Bài 1 :

Tính biệt thức $\Delta $ từ đó tìm số nghiệm của phương trình $9{x^2} - 15x + 3 = 0$.

Xem lời giải >>
Bài 2 :

Pi hỏi: Có thể nói gì về nghiệm của phương trình bậc hai \(a{x^2} + bx + c = 0\) nếu a và c trái dấu?

Em hãy trả lời câu hỏi của anh Pi.

Xem lời giải >>
Bài 3 :

Chứng minh rằng: Nếu \(ac < 0\) thì phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có hai nghiệm phân biệt. Điều ngược lại có đúng không? Tại sao?

Xem lời giải >>
Bài 4 :

Không giải các phương trình, hãy xác định số nghiệm của mỗi phương trình sau:

a) \(6{x^2} - 2x + 9 = 0\)

b) \(3{x^2} - 2\sqrt {15} x + 5 = 0\)

c) \(\frac{1}{3}{y^2} - 5y + \frac{3}{2} = 0\)

d) \(2,3{t^2} + 1,15t - 6,4 = 0\)

Xem lời giải >>
Bài 5 :

Tính biệt thức \(\Delta \) từ đó tìm số nghiệm của phương trình \( - 13{x^2} + 22x - 13 = 0\).

Xem lời giải >>
Bài 6 :

Cho phương trình bậc hai \( - 4{x^2} + 3x - 6 = 0\). Phương trình có nghiệm là

Xem lời giải >>
Bài 7 :

Phương trình nào sau đây có nghiệm kép?

Xem lời giải >>