Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình thoi tâm O, SO vuông góc với mặt đáy. Biết cạnh hình thoi bằng 2024, góc BAD bằng \({120^o}\), khoảng cách từ điểm C đến mặt phẳng (SBD) bằng bao nhiêu?
Đáp án:
Đáp án:
Ta có \(\left\{ \begin{array}{l}SO \bot (ABCD) \Rightarrow SO \bot OC\\AC \bot BD \Rightarrow OC \bot BD\end{array} \right. \Rightarrow OC \bot (SBD)\).
Mà O thuộc (SBD) nên \(d(C,(SBD)) = OC\).
Vì \(\widehat {BAD} = {120^o}\) nên \(\widehat {BAC} = \widehat {DAC} = {60^o}\). Do đó tam giác ABC là tam giác đều và AC = AB = 2024.
Vậy \(d(C,(SBD)) = OC = \frac{{AC}}{2} = \frac{{2024}}{2} = 1012\).
Các bài tập cùng chuyên đề
a) Cho điểm M và đường thẳng a. Gọi H là hình chiếu của M trên a. Với mỗi điểm K thuộc a, vì sao MK ≥ MH (H.7.74)
b) Cho điểm M và mặt phẳng (P). Gọi H là hình chiếu của M trên (P). Với mỗi điểm K thuộc (P), giải thích vì sao MK ≥ MH (H.7.75).
Giá đỡ ba chân ở Hình 7.90 đang được mở sao cho ba gốc chân cách đều nhau một khoảng cách bằng 110 cm. Tính chiều cao của giá đỡ, biết các chân của giá đỡ dài 129 cm.
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và \(OA = a,OB = a\sqrt 2 \) và \(OC = 2a\). Tính khoảng cách từ điểm \(O\) đến mặt phẳng \((ABC)\).
a) Cho điểm \(M\) và đường thẳng \(a\) không đi qua \(M\). Trong mặt phẳng \(\left( {M,a} \right)\), dùng êke để tìm điểm \(H\) trên \(a\) sao cho \(MH \bot a\) (Hình 1a). Đo độ dài đoạn \(MH\).
b) Cho điểm \(M\) không nằm trên mặt phẳng sàn nhà \(\left( P \right)\). Dùng dây dọi để tìm hình chiếu vuông góc \(H\) của \(M\) trên \(\left( P \right)\) (Hình 1b). Đo độ dài đoạn \(MH\).
Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình thoi cạnh \(a\) có \(O\) là giao điểm của hai đường chéo, \(\widehat {ABC} = {60^ \circ },SO \bot \left( {ABCD} \right),SO = a\sqrt 3 \). Tính khoảng cách từ \(O\) đến mặt phẳng \(\left( {SCD} \right)\).
Cho hình chóp tam giác đều \(S.ABC\) cạnh đáy bằng \(2a\) và chiều cao bằng \(a\sqrt 2 \). Khoảng cách từ tâm \(O\) của đáy \(ABC\) đến một mặt bên là
A. \(\frac{{a\sqrt {14} }}{7}\).
B. \(\frac{{a\sqrt 2 }}{7}\).
C. \(\frac{{a\sqrt {14} }}{2}\).
D. \(\frac{{2a\sqrt {14} }}{7}\).
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a và \(SA \bot (ABC),SA = a\sqrt 2 \). Khoảng cách từ \(A\) đến mặt phẳng \((SBC)\) bằng
A. \(\frac{{6a}}{{11}}\).
B. \(\frac{{a\sqrt {66} }}{{11}}\).
C. \(\frac{{a\sqrt 6 }}{{11}}\).
D. \(\frac{{a\sqrt {11} }}{{11}}\).
Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right),AI \bot BC\left( {I \in BC} \right)\), \(AH \bot SI\left( {H \in SI} \right)\). Chứng minh rằng khoảng cách từ \(A\) đến mặt phẳng \(\left( {SBC} \right)\) bằng \(AH\).
Khi lắp thiết bị cho nhà bạn Nam, bác thợ khoan tường tại vị trí \(M\) trên tường có độ cao so với nền nhà là \(MH = 80cm\). Quan sát Hình 61, nền nhà gợi nên mặt phẳng \(\left( P \right)\), cho biết độ dài đoạn thẳng \(MH\) gợi nên khái niệm gì trong hình học liên quan đến điểm \(M\) và mặt phẳng \(\left( P \right)\).
Cho hình chóp S.ABCD có tất cả các cạnh đều bằng a, gọi O là giao điểm của AC và BD. Khoản cách từ điểm O đến mặt phẳng (SBC) bằng
A. \(\frac{{a\sqrt 6 }}{6}\).
B. \(\frac{{a\sqrt 3 }}{3}\).
C. \(\frac{{a\sqrt 3 }}{2}\).
D. \(\frac{{a\sqrt 6 }}{3}\).
Cho tứ diện \(ABCD\) có cạnh \(AB\) vuông góc với mặt phẳng \(\left( {BCD} \right)\) và tam giác \(BCD\) vuông tại \(C\). Biết rằng \(AB = BC = 2a.\) Khoảng cách từ điểm \(B\) tới mặt phẳng \(\left( {ACD} \right)\) bằng bao nhiêu?
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy. Tính khoảng cách từ điểm A đến mặt phẳng (SBC) theo a, biết \(SA = \frac{{a\sqrt 6 }}{2}\).
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Gọi G là trọng tâm của tam giác ABC, M là trung điểm của SC.
a) Tính khoảng cách từ S đến mặt phẳng (ABC).
b) Tính khoảng cách từ M đến mặt phẳng (SAG).
Cho hình lăng trụ tam giác đều ABC.A’B’C’ có tất cả các cạnh bằng a. Khoảng cách từ A đến mặt phẳng (A’BC) bằng
A. \(\frac{a}{{\sqrt 2 }}\)
B. \(\frac{{a\sqrt 6 }}{4}\)
C. \(\frac{{a\sqrt 3 }}{{\sqrt 7 }}\)
D. \(\frac{{a\sqrt 3 }}{4}\)
Cho hình chóp \(S.ABCD\) có mặt phẳng \(\left( {SAB} \right)\) vuông góc với mặt đáy \(\left( {ABCD} \right)\), tam giác \(SAB\) đều, đáy \(ABCD\) là hình vuông cạnh bằng \(a\). Gọi \(H\) là trung điểm của cạnh \(AB\). Khoảng cách từ điểm \(H\) đến mặt phẳng \(\left( {SAC} \right)\) bằng
A. \(\frac{{a\sqrt {30} }}{5}\).
B. \(\frac{{a\sqrt {21} }}{{14}}\).
C. \(\frac{{a\sqrt 6 }}{{10}}\).
D. \(\frac{{a\sqrt 6 }}{5}\).
Hình dưới minh hoạ hình ảnh một chiếc gậy dài 3 m đặt dựa vào tường, góc nghiêng giữa chiếc gậy và mặt đất là \({65^o}\). Đầu trên của chiếc gậy đặt vào vị trí \(M\) của tường. Khoảng cách từ vị trí \(M\) đến mặt đất (làm tròn kết quả đến hàng phần mười của mét) bằng:
A. 2,7 m
B. 2,8 m
C. 2,9 m
D. 3,0 m