Cho \(X = \left\{ {\,a\,;b} \right\}\). Các cách viết sau đúng hay sai? Giải thích kết luận đưa ra.
a) \(a \subset X\)
b) \(\left\{ a \right\} \subset X\);
c) \(\emptyset \in X\);
a) Cách viết: \(a \subset X\) Sai vì \(\,a\) (là một phần tử của A) không phải là một tập hợp do đó ta phải dùng kí hiệu “\( \in \)” chứ không phải “\( \subset \)”.
Cách viết đúng: \(a \in X\)
b) Cách viết \(\left\{ a \right\} \subset X\) đúng, vì \(\left\{ a \right\}\)là một tập hợp, có duy nhất một phần tử là \(\,a\) và \(a \in X\)
=> Tập hợp \(\left\{ a \right\}\) là một tập con của \(X\).
c) Cách viết \(\emptyset \in X\) sai vì:
\(\emptyset \) là một tập hợp (tập hợp rỗng), không phải là một phần tử.
Cách viết đúng: \(\emptyset \subset X\)( Tập hợp rỗng là tập con của mọi tập hợp).
Các bài tập cùng chuyên đề
Gọi H là tập hợp các bạn tham gia Chuyên đề 2 trong tình huống mở đầu có tên bắt đầu bằng chữ chữ H. Các phần tử của tập hợp H có là phần tử của tập hợp B trong HĐ 1 không?
Cho tập hợp A = {a;b;c}. Tập A có bao nhiêu tập con?
A. 4
B. 6
C. 8
D. 10
Khái niệm tập hợp thường gặp trong toán học và đời sống. Chẳng hạn:
- Tập hợp A các học sinh của lớp 10D.
- Tập hợp B các học sinh tổ I của lớp đó.
Làm thế nào để diễn tả mối quan hệ giữa tập hợp A và tập hợp B?
Cho hai tập hợp:
\(A = \{ n \in N|n\)chia hết cho 3},
\(B = \{ n \in N|n\)chia hết cho 9}.
Chứng tỏ rằng \(B \subset A.\)
Cho hai tập hợp:
\(A = \{ x \in \mathbb{Z}| - 3 < x < 3\} ,\)\(B = \{ x \in \mathbb{Z}| - 3 \le x \le 3\} \)
a) Viết tập hợp A, B bằng cách liệt kê các phần tử của tập hợp.
b) Mỗi phần tử của tập hợp A có thuộc tập hợp B không?
Cho tập hợp \(X = \{ a;b;c\} \). Viết tất cả các tập con của tập hợp X.
Sắp xếp các tập hợp sau theo quan hệ "\(\subset\)":
[2; 5], (2; 5), [2; 5), (1; 5].
Bạn An khẳng định rằng: Với các tập hợp A, B, C bất kì, nếu \(A \subset B\) và \(B \subset C\) thì \(A \subset C.\)
Khẳng định của bạn An có đúng không? Hãy giải thích bằng cách sử dụng biểu đồ Ven.
Viết tất cả các tập con của tập hợp \(A = \{ a;b\} .\)
Trong mỗi trường hợp sau đây, các phần tử của tập hợp A có thuộc tập hợp B không? Hãy giải thích.
a) \(A = \{ - 1;1\} \) và \(B = \{ - 1;0;1;2\} \)
b) \(A = \mathbb{N}\) và \(B = \mathbb{Z}\)
c) A là tập hợp các học sinh nữ của lớp 10E, B là tập hợp các học sinh của lớp này.
d) A là tập hợp các loài động vật có vú, B là tập hợp các loài động vật có xương sống.
Hãy viết tất cả các tập con của tập hợp \(B = \{ 0;1;2\} .\)
Xét quan hệ bao hàm giữa các tập hợp dưới đây. Vẽ biểu đồ Ven thể hiện các quan hệ bao hàm đó.
A là tập hợp các hình tứ giác;
B là tập hợp các hình bình hành;
C là tập hợp các hình chữ nhật;
D là tập hợp các hình vuông;
E là tập hợp các hình thoi.
a) Hãy viết tất cả các tập hợp con của tập hợp \(A = \{ a;b;c\} \)
b) Tìm tất cả các tập hợp B thỏa mãn điều kiện \(\{ a;b\} \subset B \subset \{ a;b;c;d\} \)
Cách viết nào sau đây là đúng?
Trong các mệnh đề sau, mệnh đề nào sai?
Cho tập hợp \(X = \left\{ {a;b;c;d} \right\}\). Viết tất cả các tập con có ba phần từ của tập hợp X.
Cho ba tập hợp: A là tập hợp các tam giác; B là tập hợp các tam giác cân; C là tập hợp các tam giác đều. Dùng kí hiệu \( \subset \) để mô tả quan hệ của hai trong các tập hợp trên.
Dùng kí hiệu \( \subset \) để mô tả quan hệ của hai tập hợp khác nhau trong tập hợp sau: \(\left[ { - 1;3} \right];\left( { - 1;3} \right);\left[ { - 1;3} \right),\left( { - 1;3} \right],\left\{ { - 1;3} \right\}\).
Hãy chỉ ra các quan hệ bao hàm giữa các tập hợp sau và vẽ đồ thị Ven dể biểu diễn các quan hệ đó.
a) A = {x | x là tứ giác}
b) B = {x | x là hình vuông}
c) C = {x | x là hình chữ nhật}
d) D = {x | x là hình bình hành}
Tìm tất cả các tập hợp A thỏa mãn điều kiện \(\left\{ {a;b} \right\} \subset A \subset \left\{ {a;b;c;d} \right\}\).
Cho các tập hợp \(A = \left\{ {1;2;3;4;5} \right\}\) và \(B = \left\{ {1;3;5;7;9} \right\}\). Hãy tìm tập hợp M có nhiều phần tử nhất thỏa mãn \(M \subset A\) và \(M \subset B\).
Cho hai tập hợp \(A = \left\{ {2k + 1\left| {k \in \mathbb{Z}} \right.} \right\}\) và \(B = \left\{ {6l + 3\left| {l \in \mathbb{Z}} \right.} \right\}\). Chứng minh rằng \(B \subset A\).
Cho hai tập hợp \(A = \left\{ {1;2;a} \right\}\) và \(B = \left\{ {1;{a^2}} \right\}\). Tìm tất cả các giá trị của a sao cho \(B \subset A\).
Biết rằng tập hợp M thỏa mãn \(M \cap \left\{ {1;3} \right\} = \left\{ 1 \right\},M \cap \left\{ {5;7} \right\} = \left\{ 5 \right\},M \cap \left\{ {9;11} \right\} = \left\{ 9 \right\}\)và \(M \subset \left\{ {1;3;5;7;9;11} \right\}\). Hãy tìm M.
Tập hợp \(\left\{ {y \in \mathbb{N}\left| {y = 5 - {x^2},x \in \mathbb{N}} \right.} \right\}\) có bao nhiêu tập con?
A. 3
B. 4
C. 8
D. 16
Cho tập hợp \(A = \{ 1;2;3;4\} \). Tập hợp nào sau đây là tập con của A?
Cho tập hợp \(A = \{ 0;2;3;4;5\} \). Tập hợp nào sau đây là tập con của A?
Số tập con của tập hợp A = {-1;2;b} là
Cho hai tập hợp A = [m – 3; m + 2], B = (-3; 5) với \(m \in \mathbb{R}\). Có bao nhiêu giá trị nguyên m để \(A \subset B\)?