Đề bài

Chọn câu sai.

  • A.

    Tổng ba số tự nhiên liên tiếp chia hết cho \(3\)

  • B.

    Tổng bốn số tự nhiên liên tiếp không chia hết cho \(4\)

  • C.

    Tổng  năm số tự nhiên  chẵn liên tiếp chia hết cho \(10\)

  • D.

    Tổng bốn số tự nhiên liên tiếp chia hết cho \(4\)

Phương pháp giải

Sử dụng tính chất 1: “Nếu tất cả các số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó” và tính chất 2: “Nếu chỉ có một số hạng của tổng không chia hết cho một số, còn các số hạng khác đều chia hết cho số đó thì tổng không chia hết cho số đó”  để giải bài toán.

Lời giải của GV Loigiaihay.com

+)  Gọi ba số tự nhiên liên tiếp là \(n;n + 1;n + 2\) $\left( {n \in N} \right)$ thì tổng  ba số tự nhiên liên tiếp là \(n + n + 1 + n + 2 = 3n + 3\). Vì \(3 \vdots 3\) nên \(\left( {3n + 3} \right) \vdots 3\) suy ra A đúng.

+) Gọi bốn  số tự nhiên liên tiếp là \(n;n + 1;n + 2;n + 3\) $\left( {n \in N} \right)$ thì tổng  bốn số tự nhiên liên tiếp là \(n + n + 1 + n + 2 + n + 4 = 4n + 7\). Vì $4 \vdots 3;\,7\not  \vdots \,4$ nên \(\left( {4n + 7} \right)\not  \vdots 4\) suy ra B đúng, D sai.

+) Gọi năm  số tự nhiên chẵn liên tiếp là \(2n;2n + 2;2n + 4;2n + 6;2n + 8\) $\left( {n \in N} \right)$ thì tổng  năm số tự nhiên chẵn liên tiếp là \(2n + 2n + 2 + 2n + 4 + 2n + 6 + 2n + 8 = 10n + 20\). Vì $10 \vdots 10;\,20 \vdots 10$ nên \(\left( {10n + 20} \right) \vdots 10\) suy ra C đúng.

Đáp án : D