Đề bài

Tứ giác ABCD có các cạnh tỉ lệ với 3, 5, 7, 9 và chu vi là 240 m. Cạnh ngắn nhất là:

  • A.
    10 cm
  • B.
    50 cm
  • C.
    20 cm
  • D.
    30 cm
Phương pháp giải
Tính độ dài các cạnh xem cạnh nào ngắn nhất.
Lời giải của GV Loigiaihay.com

Gọi các cạnh AB, BC, CD, DA theo tỉ lệ 3, 5, 7, 9 nên ta có:

\(\frac{{AB}}{3} = \frac{{BC}}{5} = \frac{{C{{D}}}}{7} = \frac{{DA}}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{{AB}}{3} = \frac{{BC}}{5} = \frac{{C{{D}}}}{7} = \frac{{DA}}{9} = \frac{{AB + BC + C{{D}} + DA}}{{3 + 5 + 7 + 9}} = \frac{{240}}{{24}} = 10\)

Suy ra: AB = 3. 10 = 30 cm

BC = 5 .10 = 50 cm

CD = 7. 10 = 70 cm

DA = 9 .10 = 90 cm

Vậy cạnh ngắn nhất là canh AB có độ dài 30 cm

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Hãy chọn câu sai trong các câu sau

Xem lời giải >>
Bài 2 :

Các góc của tứ giác có thể là

Xem lời giải >>
Bài 3 :

Cho hình vẽ dưới đây. Chọn khẳng định sai trong các câu sau

Xem lời giải >>
Bài 4 :

Chọn câu đúng trong các câu sau khi nói về định nghĩa tứ giác ABCD:

Xem lời giải >>
Bài 5 :

Cho hình vẽ sau, chọn câu đúng:

Xem lời giải >>
Bài 6 :

Cho tứ giác ABCD trong đó: \(\widehat A + \widehat B = {140^o}\). Tổng \(\widehat C + \widehat D\) bằng:

Xem lời giải >>
Bài 7 :

Cho tứ giác ABCD có \(\widehat A = {50^o};\widehat B = {117^o};\widehat C = {71^o}\). Số đo góc ngoài tại đỉnh D bằng:

Xem lời giải >>
Bài 8 :

Tứ giác ABCD có \(\widehat A = {50^o};\widehat B = {123^o};\widehat D = {20^o}\). Số đo của góc C là:

Xem lời giải >>
Bài 9 :

Tứ giác ABCD có \(\widehat A = {100^o};\widehat B = {120^o};\widehat C - \widehat D = {20^o}\). Số đo các góc C, D là:

Xem lời giải >>
Bài 10 :

Cho tứ giác ABCD có góc ngoài tại đỉnh D bằng \({50^o}\) ; góc ngoài tại đỉnh A bằng \({100^o}\) . Tỉnh tổng \(\widehat A + \widehat D\) trong tứ giác ABCD là:

Xem lời giải >>
Bài 11 :

Cho tứ giác ABCD. Gọi O là giao điểm của hai đường chéo AC và BD. Khẳng định nào sau đây là đúng:

Xem lời giải >>
Bài 12 :

Cho tứ giác ABCD biết số đo của các góc \(\widehat A,\widehat B,\widehat C,\widehat D\) tỉ lệ thuận với 4, 3, 5, 6. Khi đó số đo các góc \(\widehat A,\widehat B,\widehat C,\widehat D\) lần lượt là:

Xem lời giải >>
Bài 13 :

Cho tứ giác ABCD. Tổng số đo các góc ngoài tại 4 đỉnh A, B, C, D là:

Xem lời giải >>
Bài 14 :

Cho tứ giác ABCD có tổng số đo góc ngoài tại hai đỉnh B và C là \({200^o}\) . Tính số đo các góc ngoài tại hai đỉnh A, C là:

Xem lời giải >>
Bài 15 :

Tứ giác ABCD có AB = BC; CD = DA , \(\widehat B = {100^o};\widehat D = {70^o}\) . Tính \(\widehat A{,^{}}\widehat C\) ?

Xem lời giải >>
Bài 16 :

Tam giác ABC có  = 600, các tia phân giác của góc B và C cắt nhau tại I. Các tia phân giác góc ngoài tại đỉnh B và C cắt nhau tại K. Tính các góc \(\widehat {BIC}{;^{}}\widehat {BKC}\)

Xem lời giải >>
Bài 17 :

Tứ giác ABCD có: \(\widehat A + \widehat C = {60^o}\) Các tia phân giác của các góc B và D cắt nhau tại I. Tính số đo góc BID.

Xem lời giải >>