Giải bài 8 trang 18 SGK Đại số và Giải tích 11


Tìm giá trị lớn nhất của các hàm số:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tìm giá trị lớn nhất của các hàm số:

LG a

\(y = 2\sqrt{\cos x} + 1\);

Phương pháp giải:

Sử dụng tập giá trị của hàm sin và cos: \( - 1 \le \sin x \le 1;\,\, - 1 \le \cos x \le 1\).

Lời giải chi tiết:

\(y = 2\sqrt {\cos x}  + 1\)

Điều kiện: \(\cos x \ge 0\).

Vì \( - 1 \le \cos x \le 1\) nên kết hợp điều kiện ta có \(0 \le \cos x \le 1\)\( \Rightarrow 0 \le \sqrt {\cos x}  \le 1\)

\( \Rightarrow 0 \le 2\sqrt {\cos x}  \le 2\) \( \Rightarrow 0 + 1 \le 2\sqrt {\cos x} + 1 \le 2 + 1\) \( \Rightarrow 1 \le y \le 3\).

Do dó \(\max y = 3\) khi \(\cos x = 1 \Leftrightarrow x = k2\pi \).

LG b

\( y = 3 - 2\sin x\).

Phương pháp giải:

Sử dụng tập giá trị của hàm sin và cos: \( - 1 \le \sin x \le 1;\,\, - 1 \le \cos x \le 1\).

Lời giải chi tiết:

\(y = 3 - 2\sin x\)

ta có: \( - 1 \le \sin x \le 1\) \( \Rightarrow 2 \ge  - 2\sin x \ge  - 2\) \( \Rightarrow 3 + 2 \ge 3 - 2\sin x \ge 3 - 2\) \( \Rightarrow 5 \ge y \ge 1\).

Vậy \(\max y = 5\) khi \(\sin x =  - 1 \Leftrightarrow x =  - \dfrac{\pi }{2} + k2\pi \).

Loigiaihay.com


Bình chọn:
4.6 trên 67 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí