Bài 8 trang 120 SGK Hình học 11


Cho tứ diện đều ABCD cạnh a...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Cho tứ diện đều \(ABCD\) cạnh \(a\). Tính khoảng cách giữa hai cạnh đối diện của tứ diện.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Chứng minh khoảng cách giữa hai cạnh đối của tứ diện đều chính là độ dài đoạn thẳng nối hai trung điểm của hai cạnh đối diện.

- Tính toán dựa vào các tính chất tam giác đều.

Lời giải chi tiết

Gọi \(M, N\) lần lượt là trung điểm của \(AD\) và \(BC\),

Ta có: \(\Delta ABC = \Delta DBC(c.c.c)\) \( \Rightarrow AN = DN\) (hai đường trung tuyến tương ứng)

\(\Rightarrow \Delta AND\) cân tại \(N\).

\(\Rightarrow\) Trung tuyến \(MN\) đồng thời là đường cao \(\Rightarrow MN \, \bot \,  AD \,\,\, (1)\)

Chứng minh tương tự, \(\Delta MBC\) cân tại \(M \Rightarrow MN \, \bot  \, BC \,\,\,\,\, (2)\)

Từ (1) và (2) suy ra \(MN\) là đường vuông góc chung của \(BC\) và \(AD\).

\( \Rightarrow d\left( {AD;BC} \right) = MN\)

Tam giác \(ABN\) vuông tại \(N\) nên:

\(AN = \sqrt {A{B^2} - B{N^2}} \) \( = \sqrt {{a^2} - {{\left( {\dfrac{a}{2}} \right)}^2}}\) \(  = \dfrac{{a\sqrt 3 }}{2}\)

Áp dụng định lí Pytago vào tam giác vuông \(AMN\) ta có:

\(MN = \sqrt {A{N^2} - A{M^2}}  = \sqrt {{{3{a^2}} \over 4} - {{{a^2}} \over 4}}  = {{a\sqrt 2 } \over 2}\)

Vậy \(d\left( {AD;BC} \right) = \dfrac{{a\sqrt 2 }}{2}\).

 Loigiaihay.com


Bình chọn:
4.2 trên 19 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

Bài viết mới nhất

Sự tích hoa sen - Truyện cổ tích

Sự tích hoa dạ lan hương - Truyện cổ tích

Sự tích cây huyết dụ - Truyện cổ tích

Sự tích quả dưa bở - Truyện cổ tích

Sự tích cá chép hóa rồng - Truyện cổ tích

3+ Dẫn chứng về Tư duy đổi mới hay nhất

3+ Dẫn chứng về Hiện tượng fan cuồng hay nhất

3+ Dẫn chứng về Tha thứ hay nhất

3+ Dẫn chứng về Tự do hay nhất

3+ Dẫn chứng về Giữ lời hứa hay nhất