Bài 3 trang 156 SGK Đại số và Giải tích 11


Tính (bằng định nghĩa) đạo hàm của mỗi hàm số sau tại các điểm đã chỉ ra

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tính (bằng định nghĩa) đạo hàm của mỗi hàm số sau tại các điểm đã chỉ ra:

LG a

\(y = x^2+ x\) tại \(x_0= 1\)

Phương pháp giải:

Bước 1: Giả sử \(\Delta x\) là số gia của đối số tại \(x_0\), tính \(\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\).

Bước 2: Lập tỉ số \(\dfrac{{\Delta y}}{{\Delta x}}\).

Bước 3: Tìm \(\mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\Delta y}}{{\Delta x}}\).

Kết luận \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\Delta y}}{{\Delta x}}\).

Lời giải chi tiết:

Giả sử \(∆x\) là số gia của số đối tại \(x_0 = 1\). Ta có:

\(\begin{array}{l}
\Delta y = f\left( {1 + \Delta x} \right) - f\left( 1 \right)\\
\,\,\,\,\,\, = {\left( {1 + \Delta x} \right)^2} + \left( {1 + \Delta x} \right) - {1^2} - 1\\
\,\,\,\,\, = 1 + 2\Delta x + {\left( {\Delta x} \right)^2} + 1 + \Delta x - 2\\
\,\,\,\,\, = \Delta x\left( {\Delta x + 3} \right)\\
\Rightarrow \dfrac{{\Delta y}}{{\Delta x}} = \Delta x + 3\\
\Rightarrow \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \left( {\Delta x + 3} \right) = 3
\end{array}\)

Vậy \(f'(1) = 3\).

Cách khác:

\(\begin{array}{l}
f\left( x \right) = {x^2} + x \Rightarrow f\left( 1 \right) = 2\\
\Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}\\
= \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^2} + x - 2}}{{x - 1}}\\
= \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {x - 1} \right)\left( {x + 2} \right)}}{{x - 1}}\\
= \mathop {\lim }\limits_{x \to 1} \left( {x + 2} \right)\\
= 1 + 2\\
= 3\\
\Rightarrow f'\left( 1 \right) = 3
\end{array}\)

LG b

\(y =  \dfrac{1}{x}\) tại \(x_0= 2\)

Lời giải chi tiết:

Giả sử \(∆x\) là số gia của số đối tại \(x_0= 2\). Ta có:

\(\begin{array}{l}
\Delta y = f\left( {2 + \Delta x} \right) - f\left( 2 \right)\\
\,\,\,\,\,\,\, = \dfrac{1}{{2 + \Delta x}} - \dfrac{1}{2}\\
\,\,\,\,\,\,\, = \dfrac{{2 - 2 - \Delta x}}{{2\left( {2 + \Delta x} \right)}} = \dfrac{{ - \Delta x}}{{2\left( {2 + \Delta x} \right)}}\\
\Rightarrow \dfrac{{\Delta y}}{{\Delta x}} = \dfrac{{ - 1}}{{2\left( {2 + \Delta x} \right)}}\\
\Rightarrow \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \left( {\dfrac{{ - 1}}{{2\left( {2 + \Delta x} \right)}}} \right) = \dfrac{{ - 1}}{{2.2}} = - \dfrac{1}{4}
\end{array}\)

Vậy \(f'(2) = -   \dfrac{1}{4}\).

Cách khác:

\(\begin{array}{l}
f\left( x \right) = \dfrac{1}{x} \Rightarrow f\left( 2 \right) = \dfrac{1}{2}\\
\Rightarrow \mathop {\lim }\limits_{x \to 2} \dfrac{{f\left( x \right) - f\left( 2 \right)}}{{x - 2}}\\
= \mathop {\lim }\limits_{x \to 2} \dfrac{{\dfrac{1}{x} - \dfrac{1}{2}}}{{x - 2}}\\
= \mathop {\lim }\limits_{x \to 2} \dfrac{{\dfrac{{2 - x}}{{2x}}}}{{ - \left( {2 - x} \right)}}\\
= \mathop {\lim }\limits_{x \to 2} \left( { - \dfrac{1}{{2x}}} \right)\\
= - \dfrac{1}{{2.2}} = - \dfrac{1}{4}\\
\Rightarrow f'\left( 2 \right) = - \dfrac{1}{4}
\end{array}\)

LG c

\(y = \dfrac{x+1}{x-1}\) tại \(x_0 = 0\)

Lời giải chi tiết:

Giả sử \(∆x\) là số gia của số đối tại \(x_0= 0\).Ta có:

\(\begin{array}{l}
\Delta y = f\left( {\Delta x} \right) - f\left( 0 \right)\\
\,\,\,\,\,\,\, = \dfrac{{\Delta x + 1}}{{\Delta x - 1}} - \dfrac{{0 + 1}}{{0 - 1}}\\
\,\,\,\,\,\,\, = \dfrac{{\Delta x + 1}}{{\Delta x - 1}} + 1\\
\,\,\,\,\,\,\, = \dfrac{{\Delta x + 1 + \Delta x - 1}}{{\Delta x - 1}} = \dfrac{{2\Delta x}}{{\Delta x - 1}}\\
\Rightarrow \dfrac{{\Delta y}}{{\Delta x}} = \dfrac{2}{{\Delta x - 1}}\\
\Rightarrow \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \left( {\dfrac{2}{{\Delta x - 1}}} \right) = \dfrac{2}{{ - 1}} = - 2
\end{array}\)

Vậy \(f'(0) = -2\).

Cách khác:

\(\begin{array}{l}
f\left( x \right) = \dfrac{{x + 1}}{{x - 1}} \Rightarrow f\left( 0 \right) = - 1\\
\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\\
= \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{x + 1}}{{x - 1}} + 1}}{x}\\
= \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{x + 1 + x - 1}}{{x - 1}}}}{x}\\
= \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{2x}}{{x - 1}}}}{x}\\
= \mathop {\lim }\limits_{x \to 0} \dfrac{2}{{x - 1}}\\
= \dfrac{2}{{0 - 1}} = - 2\\
\Rightarrow f'\left( 0 \right) = - 2
\end{array}\)

 Loigiaihay.com


Bình chọn:
4.3 trên 35 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

Bài viết mới nhất

Sự tích hoa sen - Truyện cổ tích

Sự tích hoa dạ lan hương - Truyện cổ tích

Sự tích cây huyết dụ - Truyện cổ tích

Sự tích quả dưa bở - Truyện cổ tích

Sự tích cá chép hóa rồng - Truyện cổ tích

3+ Dẫn chứng về Tư duy đổi mới hay nhất

3+ Dẫn chứng về Hiện tượng fan cuồng hay nhất

3+ Dẫn chứng về Tha thứ hay nhất

3+ Dẫn chứng về Tự do hay nhất

3+ Dẫn chứng về Giữ lời hứa hay nhất