Bài 2 trang 34 SGK Hình học 11


Trong mặt phẳng tọa độ Oxy cho điểm A(-1;2) và đường thẳng d có phương trình 3x + y+ 1= 0. Tìm ảnh của A và.

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Trong mặt phẳng tọa độ \(Oxy\) cho điểm \(A(-1;2)\) và đường thẳng \(d\) có phương trình \(3x + y+ 1= 0\). Tìm ảnh của \(A\) và \(d\)

LG a

Qua phép tịnh tiến theo vectơ \( \overrightarrow v = (2;1)\)

Phương pháp giải:

\({T_{\overrightarrow v }}\left( A \right) = A' \Rightarrow \overrightarrow {AA'}  = \overrightarrow v \).

Ảnh của đường thẳng qua 1 phép tịnh tiến là một đường thẳng song song với đường thẳng ban đầu.

Lời giải chi tiết:

Gọi \(A’, d’\) lần lượt là ảnh của \(A\) và \(d\) qua các phép biến hình. Dễ dàng kiểm tra được \(A \in d\)

\({T_{\overrightarrow v }}\left( A \right) = A' \Rightarrow \overrightarrow {AA'}  = \overrightarrow v  \) \(\Rightarrow \left\{ \matrix{  {x_{A'}} + 1 = 2 \hfill \cr   {y_{A'}} - 2 = 1 \hfill \cr}  \right. \) \(\Leftrightarrow \left\{ \matrix{  {x_{A'}} = 1 \hfill \cr   {y_{A'}} = 3 \hfill \cr}  \right. \Rightarrow A'\left( {1;3} \right)\)

Đường thẳng \(d’\) là ảnh của \(d\) qua \({T_{\overrightarrow v }} \)

\(\Rightarrow d'//d\) hoặc \(d'\) trùng \(d\)

\(\Rightarrow \) phương trình đường thẳng \(d’\) có dạng: \(3x + y + c = 0\)

\(A\left( { - 1;2} \right) \in d;\,\,{T_{\overrightarrow v }}\left( A \right) = A'\left( {1;3} \right) \) \(\Rightarrow A' \in d' \) \(\Rightarrow 3 + 3 + c = 0 \).

\(\Leftrightarrow c =  - 6\,\,\left( {tm} \right)\).

Vậy phương trình đường thẳng \(d’\) là \(3x + y - 6 = 0\).

LG b

Qua phép đối xứng qua trục \(Oy\)

Phương pháp giải:

+) Phép đối xứng trục \(Oy\) biến điểm \(A\left( {x;y} \right)\) thành điểm \(A'\left( { - x;y} \right)\).

+) Tìm ảnh của đường thẳng \(d,\) ta lấy hai điểm \(A, B\) bất kì thuộc đường thẳng \(d,\) tìm ảnh\(A'; B'\) của hai điểm \(A, B\) qua phép đối xứng trục \(Oy,\) khi đó ảnh của đường thẳng \(d\) chính là đường thẳng \(A'B'.\)

Lời giải chi tiết:

\({D_{Oy}}\left( A \right) = A'\left( {1;2} \right)\)

Lấy điểm \(B\left( {0; - 1} \right) \in d \Rightarrow {D_{Oy}}\left( B \right) = B'\left( {0; - 1} \right)\).

Đường thẳng \(d’\) là ảnh của \(d\) qua phép đối xứng trục \(Oy\) \( \Rightarrow d' \equiv A'B' \)

Ta có: \(\overrightarrow {A'B'}  = \left( { - 1; - 3} \right)\) nên \(A'B'\) nhận \(\overrightarrow {{n_{A'B'}}}  = \left( {3; - 1} \right)\) làm VTPT.

Mà \(A'B'\) đi qua \(B'(0;-1)\) nên phương trình đường thẳng \(d’\) là:

\(3\left( {x - 0} \right) - 1\left( {y + 1} \right) = 0 \) \(\Leftrightarrow 3x - y - 1 = 0\)

LG c

Qua phép đối xứng qua gốc tọa độ

Phương pháp giải:

+) Phép đối xứng qua gốc tọa độ biến \(A\left( {x;y} \right)\)  thành \(A'\left( { - x;-y} \right)\).

+) Ảnh của đường thẳng qua phép đối xứng là 1 đường thẳng song song với đường thẳng đã cho.

Lời giải chi tiết:

\({D_{\left( O \right)}}\left( A \right) = A'\left( {1; - 2} \right)\)

Đường thẳng \(d’\) là ảnh của \(d\) qua \({D_{\left( O \right)}}\) và \(O\) không thuộc \(d\) nên \( \Rightarrow d'//d \)

\(\Rightarrow \) phương trình đường thẳng \(d’\) có dạng: \(3x + y + c = 0\,\,\left( {c \ne 1} \right)\)

\(A\left( { - 1;2} \right) \in d;\,\,{D_{\left( O \right)}}\left( A \right) = A'\left( {1; - 2} \right) \) \(\Rightarrow A' \in d' \Rightarrow 3 - 2 + c = 0 \)

\(\Leftrightarrow c =  - 1\,\,\left( {tm} \right)\).

Vậy phương trình đường thẳng \(d’\) là \(3x + y - 1 = 0\).

LG d

Qua phép quay tâm \(O\) góc \( 90^{\circ}\)

Phương pháp giải:

Ảnh của đường thẳng \(d\) qua phép quay tâm \(O\) góc \(90^0\) là đường thẳng vuông góc với \(d.\)

Lời giải chi tiết:

\({Q_{\left( {O;{{90}^0}} \right)}}\left( A \right) = A'\left( {x';y'} \right) \)

\( \Rightarrow \left\{ \begin{array}{l}
x' = - {y_A} = - 2\\
y' = {x_A} = - 1
\end{array} \right. \Rightarrow A'\left( { - 2; - 1} \right)\)

Đường thẳng \(d’\) là ảnh của \(d\) qua \({Q_{\left( {O;{{90}^0}} \right)}} \Rightarrow d' \bot d \Rightarrow \) phương trình đường thẳng \(d’\) có dạng: \(x - 3y + c = 0\).

\(A\left( { - 1;2} \right) \in d;\) \({Q_{\left( {O;{{90}^0}} \right)}}\left( A \right) = A'\left( { - 2; - 1} \right) \)

\(\Rightarrow A' \in d' \Rightarrow  - 2 - 3\left( { - 1} \right) + c = 0 .\)

\(\Leftrightarrow c =  - 1\).

Vậy phương trình đường thẳng \(d’\) là \(x - 3y - 1 = 0\).

Cách khác:

Lấy \(A(-1;2)\) và \(B(0;-1)\) thuộc \(d\) và  \(Q_{(O, 90^o})\) biến \(A\) thành \(A’(-2; -1)\) biến \(B\) thành \(B’(1; 0).\)

Mà \(A, B\) thuộc \(d\) nên \(A’, B’\) thuộc \(d’.\)

Vậy \(Q_{(O, 90^o})\) biến \(d\) thành \(d’\) qua hai điểm \(A’, B’\)

Do đó phương trình \(d’\) là phương trình \(A'B'.\)

Ta có: \(\overrightarrow {A'B'}  = \left( {3;1} \right)\) nên \(\overrightarrow {{n_{A'B'}}}  = \left( {1; - 3} \right)\) là VTPT của \(d'.\)

Mà \(d'\) đi qua \(B'(1;0)\) nên có phương trình:

\(1(x-1)-3(y-0)=0\) hay \(x-3y-1=0.\)

 Loigiaihay.com


Bình chọn:
4.2 trên 28 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí