Bài 1 trang 77 SGK Hình học 11


Cho hai hình thang ABCD và ABEF có chung đáy lớn AB và không cùng nằm trong một mặt phẳng.

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Cho hai hình thang \(ABCD\) và \(ABEF\) có chung đáy lớn \(AB\) và không cùng nằm trong một mặt phẳng.

a) Tìm giao tuyến của các mặt phắng sau: \((AEC)\) và \((BFD)\), \((BCE)\) và \((ADF)\).

b) Lấy \(M\) là điểm thuộc \(DF\). Tìm giao điểm của đường thẳng \(AM\) với mặt phẳng \((BCE)\).

c) Chứng minh hai đường thẳng \(AC\) và \(BF\) không cắt nhau.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Tìm hai điểm chung của các mặt phẳng.

b) Tìm điểm chung của  \(AM\) với mặt phẳng \((BCE)\).

c) Sử dụng phương pháp phản chứng: Giả sử AC và BF đồng phẳng.

Lời giải chi tiết

a) Trong \((ABCD)\), gọi \(I=AC ∩ BD \). 

Do đó \(\left\{ \begin{array}{l}I \in AC \subset \left( {AEC} \right)\\I \in BD \subset \left( {BFD} \right)\end{array} \right.\) \( \Rightarrow I \in \left( {AEC} \right) \cap \left( {BFD} \right)\).

Trong \(( ABEF)\), gọi \(J=AE ∩ BF \)

Do đó \(\left\{ \begin{array}{l}J \in AE \subset \left( {AEC} \right)\\J \in BF \subset \left( {BFD} \right)\end{array} \right.\)\( \Rightarrow J \in \left( {AEC} \right) \cap \left( {BFD} \right)\).

Vậy \( (ACE) ∩ (BDF) = IJ\).

Trong \(\left( {ABCD} \right)\): gọi \(G = AD \cap BC\).

Khi đó \(\left\{ \begin{array}{l}G \in AD \subset \left( {ADF} \right)\\G \in BC \subset \left( {BCE} \right)\end{array} \right.\) \( \Rightarrow G \in \left( {ADF} \right) \cap \left( {BCE} \right)\).

Trong \(\left( {ABEF} \right)\): gọi \(H = AF \cap BE\).

Khi đó \(\left\{ \begin{array}{l}H \in AF \subset \left( {ADF} \right)\\H \in BE \subset \left( {BCE} \right)\end{array} \right.\) \( \Rightarrow H \in \left( {ADF} \right) \cap \left( {BCE} \right)\).

Vậy \((BCE) ∩ ( ADF) = GH\)

b) Trong \((AGH)\): Gọi \(N=AM ∩ GH\)

\( \Rightarrow \left\{ \begin{array}{l}N \in AM\\N \in GH \subset \left( {BGH} \right) \equiv \left( {BCE} \right)\end{array} \right.\) \( \Rightarrow N = AM \cap \left( {BCE} \right)\)

c) Chứng minh bằng phương pháp phản chứng.

Giả sử \(AC\) và \(BF\) cùng nằm trong một mặt phẳng.

Khi đó \(BF \subset \left( {ABCD} \right)\) hay hai mặt phẳng \(\left( {ABCD} \right)\) và \(\left( {ABEF} \right)\) trùng nhau (mâu thuẫn giả thiết)

Do đó: \(AC\) và \(BF\) không cắt nhau.

Loigiaihay.com


Bình chọn:
4.5 trên 21 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

Bài viết mới nhất

Sự tích hoa sen - Truyện cổ tích

Sự tích hoa dạ lan hương - Truyện cổ tích

Sự tích cây huyết dụ - Truyện cổ tích

Sự tích quả dưa bở - Truyện cổ tích

Sự tích cá chép hóa rồng - Truyện cổ tích

3+ Dẫn chứng về Tư duy đổi mới hay nhất

3+ Dẫn chứng về Hiện tượng fan cuồng hay nhất

3+ Dẫn chứng về Tha thứ hay nhất

3+ Dẫn chứng về Tự do hay nhất

3+ Dẫn chứng về Giữ lời hứa hay nhất