Đề kiểm tra giữa học kì 1 - Đề số 3
Số câu: 40 câuThời gian làm bài: 90 phút
Phạm vi kiểm tra: Đại số hết chương I: Căn bậc hai, căn bậc ba; Hình học hết chương 5: Hệ thức lượng trong tam giác vuông
Cho tam giác $MNP$ vuông tại $M$. Khi đó $\cos \widehat {MNP}$ bằng

Cho tam giác $ABC$ vuông tại $A$ có $AB = 3cm,{\rm{ }}BC = 5cm.{\rm{ }}AH$ là đường cao. Tính $BH,CH,AC$ và $AH.$
Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\) (như hình vẽ). Hệ thức nào sau đây là sai?
Cho tam giác \(ABC\) vuông tại \(A,\) chiều cao \(AH\). Chọn câu sai.
Tìm điều kiện xác định của\(\sqrt {125 - 5x} \).
Đưa thừa số $\sqrt {81{{\left( {2 - y} \right)}^4}} $ ra ngoài dấu căn ta được ?
Cạnh bên của tam giác \(ABC\) cân tại \(A\) dài $20cm$ , góc ở đáy là \(50^\circ \)
Độ dài cạnh đáy của tam giác cân là (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Một cầu trượt trong công viên có độ dốc là ${28^0}$ và có độ cao là $2,1m.$Tính độ dài của mặt cầu trượt (làm tròn đến chữ số thập phân thứ hai).
Cho tam giác \(ABC\) vuông tại \(A\) có \(AC = 10\,cm,\widehat C = 30^\circ .\) Tính $AB;BC$
Một cột đèn có bóng trên mặt đất dài \(6m.\) Các tia nắng mặt trời tạo với mặt đất một góc xấp xỉ bằng \({38^0}.\) Tính chiều cao của cột đèn. (làm tròn đến chữ số thập phân thứ hai)
Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$ (như hình vẽ). Hệ thức nào sau đây là đúng?

Chọn đáp án đúng.
Cho tam giác $MNP$ vuông tại $N$. Hệ thức nào sau đây là đúng?
Tìm giá trị của \(x\) không âm biết \(5\sqrt {2x} - 125 = 0\).
Rút gọn biểu thức \(\dfrac{{{a^2}}}{{11}}.\sqrt {\dfrac{{121}}{{{a^4}{b^{10}}}}} \) với \(ab \ne 0\) ta được:
Trục căn thức ở mẫu biểu thức \(\dfrac{4}{{3\sqrt x + 2\sqrt y }}\) với \(x \ge 0;y \ge 0;x \ne \dfrac{4}{9}y\) ta được:
Rút gọn biểu thức \(2\sqrt {8\sqrt 3 } - 2\sqrt {5\sqrt 3 } - 3\sqrt {20\sqrt 3 } \)
Rút gọn biểu thức \(3\sqrt {8a} + \dfrac{1}{4}\sqrt {\dfrac{{32a}}{{25}}} - \dfrac{a}{{\sqrt 3 }}.\sqrt {\dfrac{3}{{2a}}} - \sqrt {2a} \) với \(a > 0\) ta được:
Cho biểu thức \(A = \dfrac{{\sqrt x + 1}}{{\sqrt x - 2}}\) với \(x \ge 0;x \ne 4\). Tìm các giá trị của \(x\) biết \(A = \dfrac{{\sqrt x - 1}}{2}\) .
Kết luận nào đúng khi nói về nghiệm của phương trình $\sqrt[3]{{3x - 2}} = - 2$
Thu gọn biểu thức $\sqrt[3]{{{x^3} + 3{x^2} + 3x + 1}} - \sqrt[3]{{8{x^3} + 12{x^2} + 6x + 1}}$ ta được
Giải phương trình \(\sqrt {2{x^2} - 4x + 5} = x - 2\) ta được nghiệm là
Cho biểu thức $P = 1:\left( {\dfrac{{x + 2}}{{x\sqrt x - 1}} + \dfrac{{\sqrt x + 1}}{{x + \sqrt x + 1}} - \dfrac{{\sqrt x + 1}}{{x - 1}}} \right)$ . Chọn câu đúng.
Cho \(\Delta ABC\) vuông tại \(A\) có \(AB = 3cm,\,AC = 4cm,\,\) đường cao \(AH\) và đường trung tuyến \(AM\). Độ dài đoạn thẳng \(HM\) là
Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\) có \(AC = 15\,cm,\,CH = 6\,cm\). Tính tỉ số lượng giác \(\cos B\).
Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$ có \(CH = 4\,cm,\,BH = 3\,cm.\) Tính tỉ số lượng giác $\cos C$ (làm tròn đến chữ số thập phân thứ $2$ )
Cho tam giác \(ABC\) cân tại \(A,\,\,\angle B = {65^0},\) đường cao \(CH = 3,6\). Hãy giải tam giác \(ABC\).
Cho hình thang \(ABCD\) vuông tại \(A\) và \(D;\)\(\angle C = {50^0}\). Biết \(AB = 2;AD = 1,2\). Tính diện tích hình thang \(ABCD.\)
Hai bạn học sinh Mai và Đào đang đứng ở mặt đất bằng phẳng, cách nhau \(150m\) thì nhìn thấy một chiếc diều ( ở vị trí \(C\) giữa hai bạn). Biết góc ''nâng'' để nhìn thấy diều ở vị trí của Mai là \({45^0}\), góc ''nâng'' để nhìn thấy diều ở vị trí của Đào là \({35^0}\) . Hãy tính độ cao của diều lúc đó so với mặt đất? (làm tròn đến chữ số thập phân thứ hai)
Tính giá trị của \(A =\dfrac{1}{{2\sqrt 1 + 1\sqrt 2 }} + \dfrac{1}{{3\sqrt 2 + 2\sqrt 3 }} + ... + \dfrac{1}{{2018\sqrt {2017} + 2017\sqrt {2018} }}\)
Cho hai tam giác vuông \(OAB\) và \(OCD\) như hình vẽ. Biết \(OB = CD = a\), \(AB = OD = b.\) Tính \(\cos \angle AOC\) theo \(a\) và \(b\).
Tính giá trị biểu thức \(A = \dfrac{1}{{1 + \sqrt 3 }} + \dfrac{1}{{\sqrt 3 + \sqrt 5 }} + \dfrac{1}{{\sqrt 5 + \sqrt 7 }} \)\(+ ... + \dfrac{1}{{\sqrt {2019} + \sqrt {2021} }}\)
Tính diện tích một tam giác vuông có chu vi \(72\,cm\), hiệu giữa đường trung tuyến và đường cao ứng với cạnh huyền bằng \(7\,cm.\)
Cho đoạn thẳng $AB = 2a$ và trung điểm $O$ của nó. Trên nửa mặt phẳng bờ $AB$ vẽ các tia $Ax,By\;$ vuông góc với $AB.$ Qua \(O\) vẽ một tia cắt tia \(Ax\) tại $M$ sao cho $\widehat {AOM} = \alpha < {90^0}$ . Qua $O$ vẽ tia thứ hai cắt tia $By$ tại $N$ sao cho \(\widehat {MON} = 90^\circ \) . Khi đó, diện tích tam giác \(MON\) là