Đề kiểm tra 45 phút chương 1: Căn bậc hai - Căn bậc ba - Đề số 1
Số câu: 25 câuThời gian làm bài: 45 phút
Phạm vi kiểm tra: Toàn bộ chương 1: Căn bậc hai - Căn bậc ba
Cho các biểu thức với $A < 0$ và $B \ge 0$ , khẳng định nào sau đây là đúng?
Kết quả của phép tính $\sqrt {\dfrac{{81}}{{169}}} $ là?
Rút gọn biểu thức \(2\sqrt[3]{{27{a^3}}} - 3\sqrt[3]{{8{a^3}}} + 4\sqrt[3]{{125{a^3}}}\) ta được:
Cho $a,b$ là hai số không âm. Khẳng định nào sau đây là đúng?
So sánh hai số $5\sqrt 3 $ và $4\sqrt 5 $
Phép tính $\sqrt {{{\left( { - 5} \right)}^2}{{.7}^2}} $ có kết quả là?
Giá trị của biểu thức \(\sqrt {{{\left( {\sqrt 2 + \sqrt 5 } \right)}^2}} - \sqrt {7 - 2\sqrt {10} } \).
Đưa thừa số $5y\sqrt y $ ($y \ge 0$) vào trong dấu căn ta được
Nghiệm của phương trình \(\sqrt {{\rm{2}}{{\rm{x}}^2} + 31} = x + 4\) là
Tìm giá trị của $x$ không âm biết $2\sqrt x - 30 = 0$.
Giá trị biểu thức \(\sqrt {5x + 3} .\sqrt {5x - 3} \) khi \(x = \sqrt {3,6} \) là:
Nghiệm của phương trình \(\dfrac{3}{2}\sqrt {x - 1} - \dfrac{1}{2}\sqrt {9{\rm{x}} - 9} + 16\sqrt {\dfrac{{x - 1}}{{64}}} = 12\) là:
Rút gọn biểu thức \(D = \dfrac{{2\left( {a + b} \right)}}{{\sqrt b }}\sqrt {\dfrac{b}{{{a^2} + 2ab + {b^2}}}} \) với \(a,b > 0\) ta được:
Trục căn thức ở mẫu biểu thức \(\dfrac{4}{{3\sqrt x + 2\sqrt y }}\) với \(x \ge 0;y \ge 0;x \ne \dfrac{4}{9}y\) ta được:
Rút gọn biểu thức \(\dfrac{{4a}}{{\sqrt 7 - \sqrt 3 }} - \dfrac{{2a}}{{2 - \sqrt 2 }} - \dfrac{a}{{\sqrt 3 + \sqrt 2 }}\) ta được:
Trục căn thức ở mẫu biểu thức \(\dfrac{{2a}}{{2 - \sqrt a }}\)với $a \ge 0;a \ne 4$ ta được
Cho biểu thức \(A = \dfrac{{2\sqrt x + 1}}{{\sqrt x + 1}}\)với \(x \ge 0\). So sánh \(A\) với \(2\).
Cho biểu thức \(P = \dfrac{{\sqrt x }}{{\sqrt x - 1}}\) với \(x \ge 0;x \ne 1\). Giá trị của \(P\) khi \(x = \dfrac{8}{{3 - \sqrt 5 }}\) là:
Rút gọn biểu thức \(2\sqrt a - \sqrt {9{a^3}} + {a^2}\sqrt {\dfrac{{16}}{a}} + \dfrac{2}{{{a^2}}}\sqrt {36{a^5}} \) với $a > 0$ ta được
Rút gọn biểu thức \(P = \dfrac{{2\sqrt 6 + \sqrt 3 + 4\sqrt 2 + 3}}{{\sqrt {11 + 2\left( {\sqrt 6 + \sqrt {12} + \sqrt {18} } \right)} }}\) ta được
Giả sử \(a;\,\,b;\,\,c\) là các số thực dương. Chọn câu đúng.