Đề kiểm tra học kì 1 - Đề số 1
Số câu: 40 câuThời gian làm bài: 90 phút
Phạm vi kiểm tra: Toàn bộ chương 1, chương 2 phần Đại số và toàn bộ chương 5, chương 6 phần Hình học
Chọn câu đúng.
Đa thức nào sau đây là mẫu thức chung của các phân thức $\dfrac{x}{{3{{\left( {x - y} \right)}^2}}},\dfrac{y}{{x - y}}$
Chọn câu sai.
Cho \(56{x^2} - 45y - 40xy + 63x = \left( {7x - 5y} \right)\left( {mx + n} \right)\) với \(m,\,n \in \mathbb{R}\) . Tìm \(m\) và \(n\)
Chọn câu trả lời đúng. Tứ giác nào có hai đường chéo vuông góc với nhau?
Biểu thức \(x - 2\) là kết quả của phép tính nào dưới đây?
Chọn câu đúng. Cho hình vẽ sau. Đường trung bình của tam giác \(ABC\) là:

Cho \(\dfrac{{{x^3} + 1}}{{{x^2} + 2x + 1}}:\dfrac{{3{x^2} - 3x + 3}}{{{x^2} - 1}} = \dfrac{{x - 1}}{{...}}\). Biểu thức thích hợp điền vào chỗ trống là:
Điền vào chỗ trống \(4{x^2} + 4x - {y^2} + 1 = \left( {...} \right)\left( {2x + y + 1} \right)\):
Hai đường chéo hình thoi có độ dài là \(10\,cm\) và \(24\,cm\). Độ dài cạnh hình thoi là:
Hãy chọn câu đúng?
Cho \(\Delta ABC\), \(I,K\) lần lượt là trung điểm của \(AB\) và \(BC\). Biết \(AC = 10\,cm\). Ta có:
Chọn câu sai.
Cho hình thoi \(ABCD\) có chu vi bằng \(24\,cm\), đường cao \(AH\) bằng \(3\,cm\). Tính \(\widehat {DCA}\).
Chọn câu sai.
Viết biểu thức \({x^3} + 12{x^2} + 48x + 64\) dưới dạng lập phương của một tổng
Với \(B \ne 0,\,D \ne 0\) , hai phân thức \(\dfrac{A}{B}\) và \(\dfrac{C}{D}\) bằng nhau khi
Câu nào sau đây là đúng khi nói về hình thang:
Chia đơn thức \({\left( { - 3x} \right)^5}\) cho đơn thức \({\left( { - 3x} \right)^2}\) ta được kết quả là
Tính số đo các góc của hình bình hành $ABCD$ biết \(\widehat D - \widehat C = {30^0}\). Ta được:
Rút gọn biểu thức \(N = 2{x^n}\left( {3{x^{n + 2}} - 1} \right) - 3{x^{n + 2}}\left( {2{x^n} - 1} \right)\) ta được
Rút gọn rồi tính giá trị các biểu thức \(A = {\left( {3x - 2} \right)^2} + {\left( {3x + 2} \right)^2} + 2\left( {9{x^2} - 6} \right)\) tại \(x = - \dfrac{1}{3}\)
Rút gọn biểu thức \(M = \left( {2x + 3} \right)\left( {4{x^2} - 6x + 9} \right) - 4\left( {2{x^3} - 3} \right)\) ta được giá trị của \(M\) là
Tìm giá trị \(x\) thỏa mãn \(3x\left( {x - 2} \right) - x + 2 = 0\)
Giá trị số tự nhiên \(n\) để phép chia \({x^n}:{x^6}\) thực hiện được là:
Để đa thức \({x^4} + a{x^2} + 1\) chia hết cho \({x^2} + 2x + 1\) thì giá trị của \(a\) là
Tính giá trị biểu thức \(C = \dfrac{{2{x^3}{y^2}}}{{{x^2}{y^5}{z^2}}}:\dfrac{{5{x^2}y}}{{4{x^2}{y^5}}}:\dfrac{{ - 8{x^3}{y^2}{z^3}}}{{15{x^5}{y^2}}}\) khi \(x = 4;y = 1;z = - 2\) .
Cho hình thang cân \(MNPQ\) (\(MN\) //\(PQ\)) có góc \(\widehat {MQP} = {45^0}\) và hai đáy có độ dài \(8cm\), \(30cm\). Diện tích của hình thang cân là:
Cho tam giác \(ABC\), đường trung tuyến \(AM\). Gọi \(D\) là trung điểm của \(AM,E\) là giao điểm của \(BD\) và \(AC,F\) là trung điểm của \(EC\). Tính \(AE\) biết \(AC = 9cm\).
Cho tứ giác \(ABCD\). Gọi \(E\), \(F\) lần lượt là trung điểm của \(AB\) và \(CD.\)\(M,N,P,Q\) lần lượt là trung điểm của \(AF,CE,BF,DE\). Khi đó \(MNPQ\) là hình gì? Chọn đáp án đúng nhất.
Cho tam giác \(ABC\) vuông cân tại \(A\), \(AC = 8\,cm\), điểm \(M\) thuộc cạnh \(BC\). Gọi \(D,E\) theo thứ tự là các chân đường vuông góc kẻ từ \(M\) đến \(AB,AC\). Chu vi của tứ giác \(ADME\) bằng:
Tứ giác \(ABCD\) có \(AB = CD.\) Gọi \(M,N\) theo thứ tự là trung đểm của \(BC,AD.\) Gọi \(I,K\) theo thứ tự là trung điểm của \(AC,BD.\) Chọn câu đúng nhất.
Cho hình vuông ABCD. M là điểm nằm trong hình vuông. Gọi E, F lần lượt là hình chiếu của M trên cạnh AB và AD. Tứ giác AEMF là hình vuông khi.
Cho tam giác \(ABC\), lấy \(M\) thuộc \(BC\) sao cho \(BM = 4CM\). Hãy chọn câu đúng:
Tính diện tích mảnh đất hình thang vuông $ABCD$ có độ dài hai đáy \(AB = 10\,cm;\,DC = 13\,cm;\,\widehat A = \widehat D = 90^\circ \) ( hình vẽ), biết tam giác $BEC$ vuông tại $E$ và có diện tích bằng \(13,5\,c{m^2}\).

Tìm giá trị nhỏ nhất của biểu thức \(A = {x^2} + 2{y^2} - 2xy + 2x - 10y\)
Cho hình vuông ABCD, điểm E thuộc cạnh CD. Tia phân giác của góc ABE cắt AD ở K. Chọn câu đúng.