Đề kiểm tra giữa học kì 1 - Đề số 3
Số câu: 40 câuThời gian làm bài: 90 phút
Phạm vi kiểm tra: Đại số hết chương I: Phép nhân và phép chia đa thức; Hình học chương I: Tứ giác(Từ đầu đến hết bài hình chữa nhật)
Chia đơn thức \({\left( { - 3x} \right)^5}\) cho đơn thức \({\left( { - 3x} \right)^2}\) ta được kết quả là
Phân tích đa thức \(mx + my + m\) thành nhân tử ta được
Chọn câu sai.
Chọn câu sai.
Viết biểu thức \({x^3} + 12{x^2} + 48x + 64\) dưới dạng lập phương của một tổng
Khai triển \({\left( {3x - 4y} \right)^2}\) ta được
Phân tích đa thức \(8{x^3} + 12{x^2}y + 6x{y^2} + {y^3}\) thành nhân tử ta được
Chọn câu sai.
Cho \(2x\left( {3x - 1} \right) - 3x\left( {2x - 3} \right) = 11\) .Kết quả \(x\) bằng:
Tỉ số độ dài hai cạnh của hình bình hành là \(3:5\). Còn chu vi của nó bằng \(48cm\). Độ dài hai cạnh kề của hình bình hành là:
Tam giác \(ABC\) đối xứng với tam giác \(A'B'C'\) qua \(O\). Biết chu vi của tam giác \(A'B'C'\)là \(32\,cm\). Chu vi của tam giác \(ABC\) là :
Rút gọn biểu thức $B = \left( {2a - 3} \right)\left( {a + 1} \right) - {\left( {a - 4} \right)^2} - a\left( {a + 7} \right)$ ta được
Chọn câu đúng.
Hãy chọn câu đúng?
Cho tam giác \(ABC\) có chu vi là \(80\). Gọi \(E,F,P\) là trung điểm của các cạnh \(AB,BC,CA\). Chu vi của tam giác \(EFP\) là:
Cho \(A = {\left( {3{a^2}b} \right)^3}{\left( {a{b^3}} \right)^2}\) ; \(B = {\left( {{a^2}b} \right)^4}\) . Khi đó \(A:B\) bằng
Điền vào chỗ trống: \(\left( {{x^3} + {x^2} - 12} \right):\left( {x - 2} \right) = .....\)
Chọn câu đúng.
Biết phần dư của phép chia đa thức \(\left( {{x^5} + {x^3} + {x^2} + 2} \right)\) cho đa thức \(\left( {{x^3} + 1} \right)\) là số tự nhiên \(a\) . Chọn câu đúng.
Cho tam giác $ABC$ cân tại $B$ , các đường trung tuyến $AA',BB',CC'$ . Trục đối xứng của tam giác $ABC$ là:
Rút gọn đa thức \(16{x^2} - 4x + \dfrac{1}{4}\) ta được kết quả nào sau đây?
Rút gọn biểu thức \(N = 2{x^n}\left( {3{x^{n + 2}} - 1} \right) - 3{x^{n + 2}}\left( {2{x^n} - 1} \right)\) ta được
Cho hình thang có đáy lớn gấp đôi đáy nhỏ, đáy nhỏ lớn hơn chiều cao \(2\) đơn vị. Biểu thức tính diện tích hình thang là:
Rút gọn biểu thức \(H = \left( {x + 5} \right)\left( {{x^2} - 5x + 25} \right) - {\left( {2x + 1} \right)^3} + 7{\left( {x - 1} \right)^3} - 3x\left( { - 11x + 5} \right)\) ta được giá trị của \(H\) là
Cho \(x\) thỏa mãn \(\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right) - x\left( {{x^2} - 2} \right) = 14.\) Chọn câu đúng.
Tìm một số khác 0 biết rằng bình phương của nó bằng năm lần lập phương của số ấy.
Tìm \(a\) và \(b\) để đa thức \(f\left( x \right) = {x^4} - 9{x^3} + 21{x^2} + ax + b\) chia hết cho đa thức \(g\left( x \right) = {x^2} - x - 2\)
Cho hình thang cân $ABCD$ đáy nhỏ $AB = 4cm$ , đáy lớn $CD = 10cm$ , cạnh bên $BC = 5cm$ thì đường cao $AH$ bằng:
Cho tam giác \(ABC\), đường trung tuyến \(AM\). Gọi \(D\) là trung điểm của \(AM,E\) là giao điểm của \(BD\) và \(AC,F\) là trung điểm của \(EC\). Tính \(AE\) biết \(AC = 9cm\).
Cho tam giác \(ABC\) vuông cân tại \(A\), \(AC = 8\,cm\), điểm \(M\) thuộc cạnh \(BC\). Gọi \(D,E\) theo thứ tự là các chân đường vuông góc kẻ từ \(M\) đến \(AB,AC\). Chu vi của tứ giác \(ADME\) bằng:
\(P = \dfrac{{2{n^3} - 3{n^2} + 3n - 1}}{{n - 1}}\). Tìm \(n \in Z\) để \(P \in Z\).
Cho biết \({x^3} = 2p + 1\) trong đó \(x\) là số tự nhiên, \(p\) là số nguyên tố. Tìm \(x.\)
Cho \({\left( {a + b + c} \right)^2} + 12 = 4\left( {a + b + c} \right) + 2\left( {ab + bc + ca} \right)\). Khi đó
Xác định hệ số \(a,b,c\) biết rằng với mọi giá trị của \(x\) thì \(\left( {ax + 4} \right)\left( {{x^2} + bx - 1} \right) = 9{x^3} + 58{x^2} + 15x + c\)
Cho tam giác \(ABC\) có \(BC = 6cm.\) Trên cạnh \(AB\) lấy các điểm \(D\) và \(E\) sao cho \(AD = BE.\) Qua \(D,E\) lần lượt vẽ các đường thẳng song song với \(BC,\) cắt \(AC\) theo thứ tự ở \(G\) và \(H\). Tính tổng \(DG + EH.\)
Cho \(M = \left( {{x^4}{y^{n + 1}} - \dfrac{1}{2}{x^3}{y^{n + 2}}} \right):\left( {\dfrac{1}{2}{x^3}{y^n}} \right) - 20{x^4}y:5{x^2}y\,\,\,\left( {n \in \mathbb{N};x;y \ne 0} \right)\) . Chọn câu đúng.