Đề kiểm tra giữa học kì 1 - Đề số 2

Số câu: 32 câuThời gian làm bài: 90 phút

Phạm vi kiểm tra: Toàn bộ chương 1: Phép nhân và phép chia các đa thức và toàn bộ chương 5: Tứ giác

Câu 3 Thông hiểu

Hình thang $ABCD$ ($AB\, // \, CD$ ) có số đo góc $D$ bằng ${70^0},$  số đo góc $A$ là:


Câu 5 Thông hiểu

Rút gọn biểu thức \(A = {\left( {3x - 1} \right)^2} - 9x\left( {x + 1} \right)\) ta được


Câu 7 Nhận biết

Phân tích đa thức \({x^3}{y^3} + 6{x^2}{y^2} + 12xy + 8\) thành nhân tử ta được


Câu 10 Nhận biết

Phép chia đa thức \(2{x^4} - 3{x^3} + 3x - 2\) cho đa thức \({x^2} - 1\) được đa thức dư là:


Câu 11 Thông hiểu

Biết phần dư của phép chia đa thức \(\left( {{x^5} + {x^3} + {x^2} + 2} \right)\) cho đa thức \(\left( {{x^3} + 1} \right)\) là số tự nhiên \(a\) . Chọn câu đúng.


Câu 12 Nhận biết

Một tam giác đều có độ dài cạnh bằng $14{\rm{ }}cm$ . Độ dài một đường trung bình của tam giác đó là:


Câu 13 Thông hiểu

Cho tứ giác \(ABCD\) có \(\widehat A = {60^0};\;\widehat B = {135^0};\;\widehat D = {29^0}\) . Số đo góc  $C$ bằng:


Câu 14 Thông hiểu

Viết biểu thức \(\left( {x - 3y} \right)\left( {{x^2} + 3xy + 9{y^2}} \right)\) dưới dạng hiệu hai lập phương


Câu 15 Thông hiểu

Phần dư của phép chia đa thức \({x^4} - 2{x^3} + {x^2} - 3x + 1\) cho đa thức \({x^2} + 1\)  có hệ số tự do là


Câu 18 Vận dụng

Rút gọn biểu thức \(M = \left( {2x + 3} \right)\left( {4{x^2} - 6x + 9} \right) - 4\left( {2{x^3} - 3} \right)\) ta được giá trị của \(M\) là


Câu 19 Vận dụng

Cho \({x^6} - 1 = \left( {x + A} \right)\left( {x + B} \right)\left( {{x^4} + {x^2} + C} \right)\), biết \(A,\,B,C\) là các số nguyên. Khi đó \(A + B + C\) bằng


Câu 20 Vận dụng
Câu 21 Vận dụng
Câu 22 Vận dụng

Tìm giá trị của \(a\) và \(b\) để đa thức \(4{x^3} + ax + b\) chia cho đa thức \({x^2} - 1\) dư \(2x - 3.\)


Câu 23 Vận dụng

Tính giá trị biểu thức \(P = \left( { - 4{x^3}{y^3} + {x^3}{y^4}} \right):2x{y^2} - xy\left( {2x - xy} \right)\) cho \(x = 1,y = \dfrac{{ - 1}}{2}\);


Câu 25 Vận dụng

Cho hình bình hành $ABCD$ . Gọi $I,{\rm{ }}K$ theo thứ tự là trung điểm của $CD,{\rm{ }}AB$ . Đường chéo $BD$ cắt $AI,{\rm{ }}CK$ theo thứ tự ở $E,{\rm{ }}F$ . Chọn khẳng định đúng.


Câu 26 Vận dụng

Cho tam giác $ABC$ vuông cân tại $A$ , $AC = 6\,cm$ , điểm $M$ thuộc cạnh $BC$ . Gọi $D,E$ theo thứ tự là các chân đường vuông góc kẻ từ $M$ đến $AB,AC$. Chu vi của tứ giác $ADME$ bằng:


Câu 27 Vận dụng

Cho hình vuông $ABCD$ . Trên các cạnh $AB,BC,CD,DA$ lần lượt lấy các điểm $E,F,G,H$ sao cho $AE = BF = CG = DH$ . Tứ giác \(EFGH\) là hình gì?


Câu 28 Vận dụng

Cho tứ giác $ABCD.$ Gọi $M,{\rm{ }}N,{\rm{ }}P,{\rm{ }}Q$ lần lượt là trung điểm các cạnh $AB,{\rm{ }}BC,{\rm{ }}CD,{\rm{ }}DA.$ Hai đường chéo $AC$ và $BD$ phải thỏa mãn điều kiện gì để $M,{\rm{ }}N,{\rm{ }}P,{\rm{ }}Q$ là bốn đỉnh của hình vuông.


Câu 29 Vận dụng cao

Cho hình vuông $ABCD,{\rm{ }}E$ là một điểm trên cạnh $CD.$ Tia phân giác của góc $BAE$ cắt $BC$ tại $M.$ Chọn câu đúng.


Câu 30 Vận dụng cao

Xác định hệ số \(a,b,c\) biết rằng với mọi giá trị của \(x\) thì \(\left( {ax + 4} \right)\left( {{x^2} + bx - 1} \right) = 9{x^3} + 58{x^2} + 15x + c\)


Câu 31 Vận dụng cao

Tìm giá trị nhỏ nhất của biểu thức \(A = {x^2} + 2{y^2} - 2xy + 2x - 10y\)


Câu 32 Vận dụng cao

Phần dư của phép chia đa thức \({\left( {{x^2} + 3x + 2} \right)^5} + {\left( {{x^2} - 4x - 4} \right)^5} - 1\) cho đa thức \(x + 1\) là