Đề kiểm tra 45 phút chương 5: Tứ giác - Đề số 1

Số câu: 20 câuThời gian làm bài: 45 phút

Phạm vi kiểm tra: Toàn bộ chương 5: Tứ giác

Câu 4 Thông hiểu
Câu 7 Thông hiểu

Cho \(\Delta ABC\) đều, cạnh \(2cm\); \(M,N\) là trung điểm của \(AB\) và \(AC\). Chu vi của tứ giác \(MNCB\) bằng


Câu 8 Thông hiểu

Cho tứ giác $ABCD$ có \(BC = CD\) và $DB$ là tia phân giác của góc \(D\). Chọn khẳng định đúng


Câu 9 Thông hiểu

Cho tam giác \(ABC\), trong đó \(AB = 15cm,\,BC = 12cm\). Vẽ hình đối xứng với tam giác \(ABC\) qua trung điểm của cạnh \(AC\). Chu vi của tứ giác tạo thành là:


Câu 10 Thông hiểu

Cho hình thang$ABCD$ . Gọi  $M,N,P,Q$ lần lượt là trung điểm của$AB,BC,CD,DA$ . Hình thang $ABCD$ có thêm điều kiện gì thì $MNPQ$ là hình thoi. Hãy chọn câu đúng


Câu 11 Vận dụng

Cho hình thang cân $ABCD$ đáy nhỏ $AB = 4cm$ , đáy lớn $CD = 10cm$ , cạnh bên $BC = 5cm$ thì đường cao $AH$ bằng:


Câu 12 Vận dụng

Cho tam giác $ABC$ , điểm $D$ thuộc cạnh $AC$ sao cho $AD = \dfrac{1}{2}DC$. Gọi $M$ là trung điểm của $BC,I$ là giao điểm của $BD$ và $AM$. So sánh \(AI\) và \(IM\) .


Câu 13 Vận dụng

Cho tứ giác $ABCD$ . Gọi$E$ , $F$ lần lượt là giao điểm của $AB$ và $CD$ , $AD$ và $BC;$  $M,N,P,Q$ lần lượt là trung điểm của $AE$ , $EC$ , $CF$ ,$FA$ . Khi đó \(MNPQ\) là hình gì? Chọn đáp án đúng nhất.


Câu 14 Vận dụng

Độ dài đường trung tuyến ứng với cạnh huyền của tam giác vuông có các cạnh góc vuông bằng $6\,cm$ , $8\,cm$ là:


Câu 15 Vận dụng

Cho tam giác $ABC$ vuông cân tại $A$ , $AC = 6\,cm$ , điểm $M$ thuộc cạnh $BC$ . Gọi $D,E$ theo thứ tự là các chân đường vuông góc kẻ từ $M$ đến $AB,AC$. Chu vi của tứ giác $ADME$ bằng:


Câu 16 Vận dụng

Cho tam giác $ABC$ . Trên các cạnh $AB$ và $AC$ lần lượt lấy hai điểm $D$ và $E$ sao cho $BD = CE$ . Gọi $M,N,P,Q$ thứ tự là trung điểm của $BE,CD,DE$ và $BC$ . Chọn câu đúng nhất.


Câu 17 Vận dụng

Cho hình vuông $ABCD$ . Trên các cạnh $AB,BC,CD,DA$ lần lượt lấy các điểm $E,F,G,H$ sao cho $AE = BF = CG = DH$ . Tứ giác \(EFGH\) là hình gì?


Câu 18 Vận dụng

Cho tứ giác $ABCD.$  Gọi $E,F,G,H$ theo thứ tự là trung điểm của $AB,BC,CD,DA$ .  Tìm điều kiện của tứ giác $ABCD$ để hình bình hành $EFGH$ là hình vuông.


Câu 19 Vận dụng cao

Cho hình bình hành $ABCD$ có \(\widehat A = \alpha  > 90^\circ \) . Ở phía ngoài hình bình hành vẽ các tam giác đều $ADE,ABF$. Tam giác \(CEF\) là tam giác gì?  Chọn câu trả lời đúng nhất


Câu 20 Vận dụng cao

Cho hình chữ nhật $ABCD$ có \(AB = a;\,AD = b\) . Cho $M$ , $N$ , $P$ , $Q$ là các đỉnh của tứ giác $MNPQ$ và  lần lượt thuộc các cạnh $AB$ , $BC$ ,$CD,DA$ . Tìm giá trị nhỏ nhất của chu vi tứ giác $MNPQ$ .