Đề kiểm tra 15 phút chương 7: Tam giác đồng dạng - Đề số 1

Số câu: 10 câuThời gian làm bài: 15 phút

Phạm vi kiểm tra: Từ bài định lý Ta-lét đến bài tính chất đường phân giác của tam giác

Câu 1 Thông hiểu

Chọn câu trả lời đúng:

Cho hình thang $ABCD$ ($AB{\rm{//}}CD$),$O$ là giao điểm của $AC$ và$BD$ . Xét các khẳng định sau:

(I) \(\dfrac{{OA}}{{OC}} = \dfrac{{AB}}{{CD}}\)  (II) \(\dfrac{{OB}}{{OC}} = \dfrac{{BC}}{{AD}}\)


Câu 3 Thông hiểu
Câu 4 Thông hiểu

Cho \(\Delta MNP,MA\) là phân giác ngoài của góc $M$ , biết \(\dfrac{{NA}}{{PA}} = \dfrac{3}{4}\). Hãy chọn câu đúng.


Câu 5 Thông hiểu

Hãy chọn câu đúng. Tính độ dài \(x,y\) của các đoạn thẳng trong hình vẽ, biết rằng các số trên hình có cùng đơn vị đo là $cm$ .


Câu 6 Vận dụng

Cho tam giác $ABC$ có $AB = 9\,cm$, điểm $D$ thuộc cạnh $AB$ sao cho $AD = 6\,cm$. Kẻ $DE$ song song  với $BC$ $\left( {E \in AC} \right)$, kẻ $EF$ song song với $CD$ $\left( {F \in AB} \right)$. Tính độ dài $AF$ .


Câu 7 Vận dụng

Cho hình thang \(ABCD\)\(\left( {AB//CD} \right)\) có diện tích \(36\,c{m^2}\),\(AB = 4\,{\rm{cm,CD = 8}}\,{\rm{cm}}\). Gọi \(O\) là giao điểm của hai đường chéo. Tính diện tích tam giác \(COD\).


Câu 8 Vận dụng

Cho tam giác $ABC$  cân tại $A$ , đường phân giác trong của  góc $B$ cắt $AC$ tại $D$ và cho biết $AB = 15$ $cm$ , $BC = 10cm$ . Khi đó $AD = $ ?


Câu 9 Vận dụng

Cho tam giác $ABC$ , \(\widehat A = {90^0}\), $AB = 15 cm, AC = 20 cm,$ đường cao $AH$ \((H \in BC)\). Tia phân giác của \(\widehat {HAB}\) cắt $HB$ tại $D$ . Tia phân giác của \(\widehat {HAC}\) cắt $HC$ tại $E$ . Tính $DH$ ?


Câu 10 Vận dụng cao

Cho tam giác ABC có AM là đường trung tuyến, N là điểm trên đoạn thẳng AM. Gọi D là giao điểm của CN và AB, E là giao điểm của BN và AC. Chọn khẳng định đúng nhất.